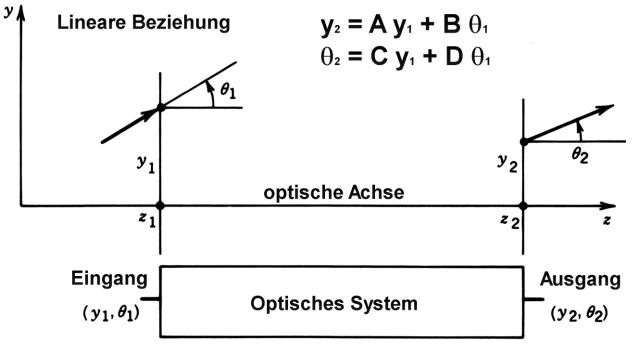
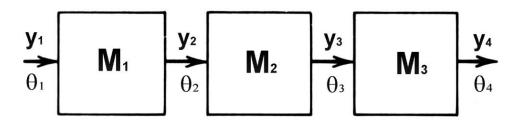
Matrixmethode (ray tracing)



Die Wirkung eines optischen Elements (Strecke, Linse...) auf einen Lichtstrahl mit den Eingangskoordinaten $\underline{\mathbf{v}}_1 = (\mathbf{y}_1, \, \theta_1)$ wird durch eine Matrix M (Transfermatrix) angegeben.

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}$$

Die Elemente der Matrix beschreiben die <u>lineare</u> Abhängigkeit der Ausgangskoordinaten $\underline{v}_2 = (y_2, \theta_2)$ von den Eingangskoordinaten



- 1. Element: $\underline{\mathbf{v}}_2 = \mathbf{M}_1 \ \underline{\mathbf{v}}_1$
- 2. Element: $\underline{\mathbf{v}}_3 = \mathbf{M}_2 \ \underline{\mathbf{v}}_2$
- 3. Element: $\underline{\mathbf{v}}_4 = \mathbf{M}_3 \ \underline{\mathbf{v}}_3$

oder auch:
$$\underline{\mathbf{v}}_4 = \mathbf{M}_3 \ \mathbf{M}_2 \ \mathbf{M}_1 \ \underline{\mathbf{v}}_1$$

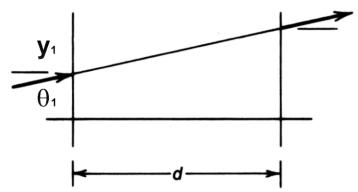
$$\underline{\mathbf{v}}_4 = \mathbf{M}_{\text{Ges}} \ \underline{\mathbf{v}}_1$$

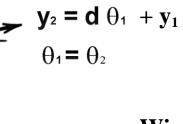
$$\mathbf{M}_{\mathrm{Ges}} = \mathbf{M}_3 \ \mathbf{M}_2 \ \mathbf{M}_1$$

Reihenfolge!

Ray tracing: nehme ein Strahlenbündel, d. h. beliebige Eingangskoordinaten $\underline{v}_i = (y_i, \theta_i)$ und untersuche die Wirkung eines optischen Systems mit M_{Ges} auf jeden einzelnen Lichtstrahl

Einzelelemente

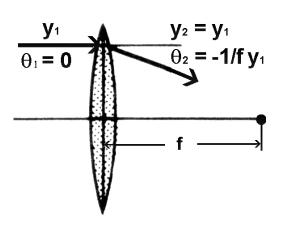




$$\mathbf{M} = \begin{bmatrix} 1 & \mathbf{d} \\ 0 & 1 \end{bmatrix}$$

Winkel θ bleibt erhalten

Ortskoordinate y ändert sich gemäß der Länge von d



Dünne Linse

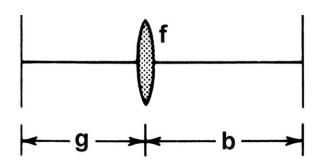
$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix}$$

Wirkung <u>direkt</u> am Element! Kleine Winkel: $\sin \theta = \theta$ Ortskoordinate y bleibt erhalten Winkel θ ändert sich als Funktion der Ortskoordinate

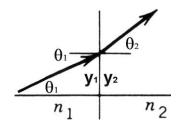
Beispiel Transfermatrix

Driftstrecke – dünne Linse - Driftstrecke

$$\begin{pmatrix} 1-b/f & (g-bg/f+b) \\ -1/f & (1-g/f) \end{pmatrix}$$
 wann gilt: $y_2 = 0$?



Lichtbrechung



Gerade Grenzfläche

An der Grenzfläche:

An der Grenzfläche:
$$y_2 = y_1$$

mit $n_1 \theta_1 = n_2 \theta_2$ (Snellius) => $\theta_2 = n_1/n_2 \theta_1$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & n_1/n_2 \end{bmatrix}$$

Brechung an Kugelfläche

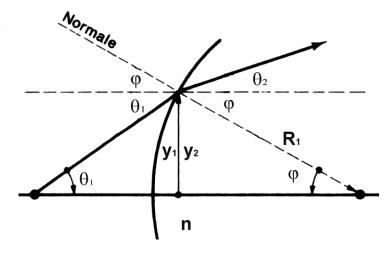
Ortstransformation: $y_2 = y_1$

Winkel: $(\theta_1 + \phi) = n (\theta_2 + \phi)$ (Snellius) $\phi = y_1/R_1$

$$\varphi = y_1/R_1$$

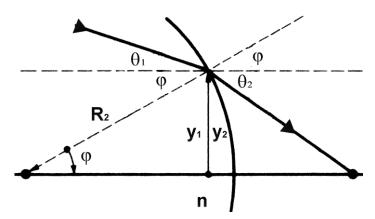
$$=> \theta_2 = \phi (\frac{1}{n} - 1) + \frac{1}{n} \theta_1 = \frac{1 - n}{n R_1} y_1 + \frac{1}{n} \theta_1$$

$$=> M_{1} = \begin{bmatrix} 1 & 0 \\ \\ \frac{1-n}{nR_{1}} & \frac{1}{n} \end{bmatrix}$$



$$\mathbf{y}_2 = \mathbf{y}_1$$

$$y_2 = y_1$$
 $n(\theta_1 + \phi) = \theta_2 + \phi$ (Snellius)



$$\Rightarrow \theta_2 = n \theta_1 + (n-1) \varphi = n \theta_1 + \frac{n-1}{R_2} y_1$$

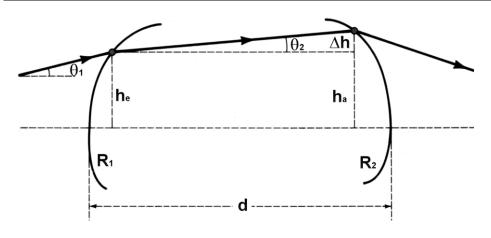
$$=> M_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
Dünne Linse: Γ

$$=>\mathbf{M}_2=\begin{bmatrix} 1 & 0 \\ \frac{\mathbf{n}-\mathbf{1}}{\mathbf{R}_2} & \mathbf{n} \end{bmatrix}$$

$$=>M_{2} = \begin{bmatrix} 1 & 0 \\ \frac{n-1}{R_{2}} & n \end{bmatrix} \qquad \frac{D \ddot{u}nne \ Linse}{M = M_{2} M_{1}} = \begin{bmatrix} 1 & 0 \\ -(n-1)(1/R_{1}-1/R_{2}) & 1 \end{bmatrix}$$

=> Linsenschleiferformel $1/f = (n-1)(1/R_1 - 1/R_2)$ R_2 negativ!

Dicke Linse



Linse der Dicke d

Transfer-(System-)Matrix: M_{Ges}

$$\mathbf{M}_{Ges} = \mathbf{M}_3 \ \mathbf{M}_2 \ \mathbf{M}_1$$

Wir setzen $R = R_1 = -R_2$ (symmetrische Linse)

$$\mathbf{M}_1 = \begin{bmatrix} 1 & & 0 \\ & & \\ \text{(1-n)/R} & & \text{1/n} \end{bmatrix} \qquad \mathbf{M}_2 = \begin{bmatrix} 1 & & \textbf{\textit{d}} \\ \mathbf{0} & & 1 \end{bmatrix} \qquad \mathbf{M}_3 = \begin{bmatrix} 1 & & 0 \\ & & \\ \text{(1-n)/(nR)} & & n \end{bmatrix}$$

$$\mathbf{M}_3 = \begin{bmatrix} 1 & 0 \\ (1-n)/(nR) & n \end{bmatrix}$$

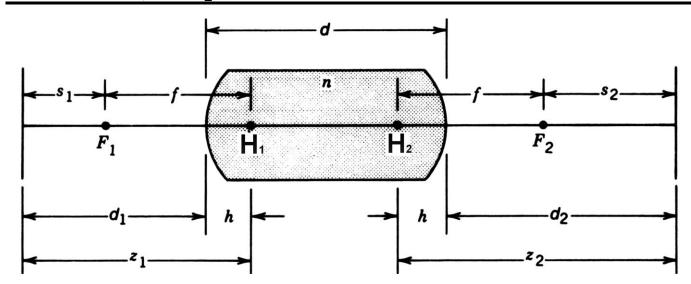
Es gilt: $\det M_1 = 1/n$ $\det M_2 = 1$ $\det M_3 = n$ mit det $M_{Ges} = \det M_1 \det M_2 \det M_3 = (1/n) \ 1 \ n = 1 \implies \det M_{Ges} = 1$

$$=> M_{Ges} = \begin{bmatrix} 1+d\frac{1-n}{n\cdot R} & d/n \\ & \\ [2\frac{1-n}{R}+d\frac{(1-n)^2}{n\cdot R^2}] & [\frac{d(1-n)}{n\cdot R}+1] \end{bmatrix} \qquad \text{Check Matrix Multiplikation}$$

$$=> \frac{1}{f} = 2 \frac{n-1}{R} - \frac{d(n-1)^2}{n \cdot R^2} = \frac{1}{f \text{dünneLinse}} - \frac{d(n-1)^2}{n \cdot R^2}$$
 dür

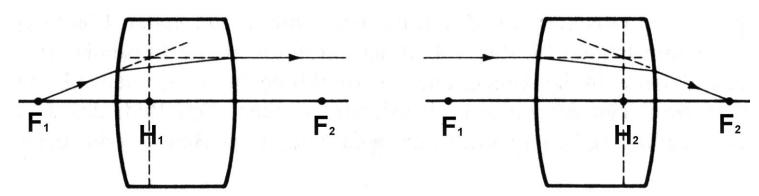
dünne Linse: beide Radien gleich

Dicke Linse, Hauptebenen



Bei dicken Linsen
(optischen Systemen)
gelingt die Konstruktion
der Abbildung erst, wenn
die Lagen der Hauptebenen relativ zu den geometrischen Abmessungen der
Linse bekannt sind

Bedeutung der Hauptebenen eines optischen Systems: formale Grenzebenen für Lichtbrechung



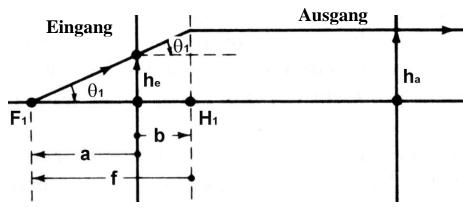
Anmerkung: die Hauptebenen können weit außen liegen, sie können sogar vertauscht sein

Die Systemmatrix der Linse gewinnt man durch Matrixpultiplikation

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = R_2 D R_1$$

Dicke Linse, Hauptebenen

Annahme: die Elemente der Systemmatrix



B seien bekannt. Dann gilt:

$$\mathbf{h}_{a} = \mathbf{A} \ \mathbf{h}_{e} + \mathbf{B} \ \mathbf{\theta}_{1}$$

$$\theta_2 = 0 = C h_e + D \theta_1 = h_e = -\frac{D}{C} \theta_1$$

kleine Winkel:
$$\theta_1 = h_e/a = a = h_e/\theta_1 = -\frac{D}{C}$$

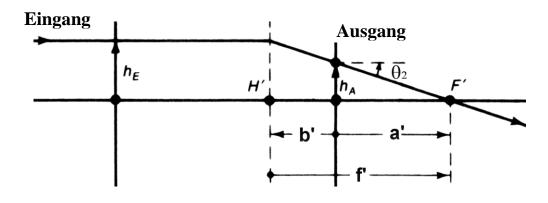
mit
$$\theta_1 = h_a/f =>$$

$$f = h_a/\theta_1 = \frac{Ah_e + B\theta_1}{\theta_1} = B + A \ h_e/\theta_1 = B - \frac{AD}{C} = -\frac{AD - BC}{C} = -\frac{det\,M}{C} = -\frac{1}{C} \qquad (siehe \ oben)$$

aber: die Entfernung der Brennweite wird von der Hauptebene aus gemessen!

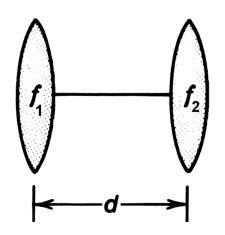
Objektseitiger Hauptebenenabstand:

$$\mathbf{b} = \mathbf{f} - \mathbf{a} = -\frac{\mathbf{D}}{\mathbf{C}} + \frac{1}{\mathbf{C}} = \frac{\mathbf{1} - \mathbf{D}}{\mathbf{C}}$$



$$h_a = A h_e$$
 $\theta_1 = 0$ $\theta_2 = C h_e$ $\theta_2 = h_a/a$, $\theta_3 = A/C$ $\theta_4 = A/C$ $\theta_5 = (A-1)/C$

Transfermatrix von zwei dünnen Linsen



Zwei dünne Linsen mit f₁ und f₂ im Abstand d Die Ausdehnung der Linsen wird vernachlässigt

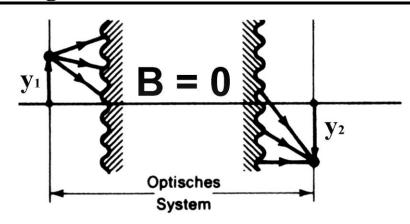
$$\mathbf{M}_{3} \, \mathbf{M}_{2} \, \mathbf{M}_{1} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_{2}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{d} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_{1}} & 1 \end{bmatrix}$$

Gesamtmatrix:
$$M_{Ges} = M_3 M_2 M_1 = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$=> M_{Ges} = \begin{pmatrix} 1 \cdot \frac{d}{f_1} & d \\ & & \\ [-\frac{1}{f_1} + \frac{d}{f_1 \cdot f_2} - \frac{1}{f_2}] & 1 \cdot \frac{d}{f_2} \end{pmatrix} \Rightarrow \frac{1}{fGes} = -C = \frac{1}{f_1} + \frac{1}{f_2} \cdot \frac{d}{f_1 \cdot f_2}$$

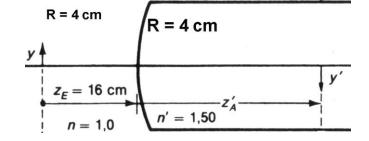
$$f\ddot{u}r f = f_1 = f_2 \implies f_{Ges} = f/(2 - d/f)$$

Bedeutung der Matrixelemente



 $y_2 = A \ y_1$: Bildgröße y_2 <u>unabhängig</u> von θ_1 Abbildungsmaßstab $A = y_2/y_1$

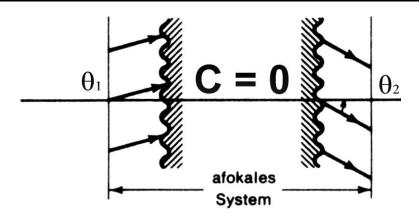
Beispiel



Polymerstab mit n = 1,5, Kugelfläche R = 4 cm Wo entsteht Bild, Abbildungsmaßstab?

$$M = \begin{bmatrix} 1 - z'_{A}/12 & 16 - 2/3 z_{A} \\ -1/12 & -2/3 \end{bmatrix}$$

$$=> z_{A} = 24 \text{ cm}, A = -1$$



 $\theta_2 = D \ \theta_1$: Winkel θ_2 unabhängig von y_1 Winkelvergrößerung $D = \theta_2/\theta_1$

Beispiel: Kepler'sches Fernrohr

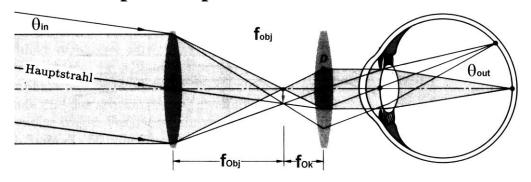
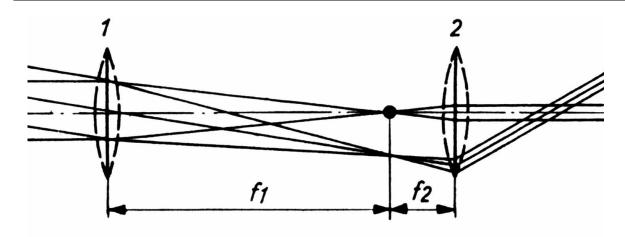


Abbildung paralleler Strahlen aus ∞ in parallele Ausgangsstrahlen (C = 0) Winkelvergrößerung: $D = f_{Obj}/f_{Ok}$ Beweis mit $M = F_{Ok} D_{Ok} D_{Ob} F_{Ob}$

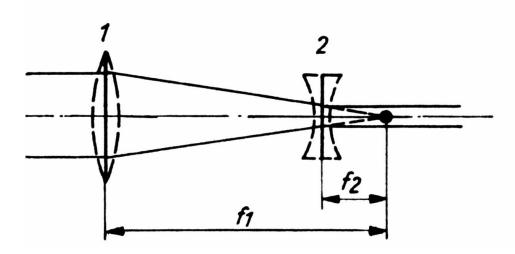
Zwei dünne Linsen: Sonderfälle



Kepler'sches Fernrohr

$$d = f_1 + f_2$$
=> $\frac{1}{fGes} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 \cdot f_2} = 0$

Winkelvergrößerung: $M_{22} = -f_1/f_2$



Galilei'sches Fernrohr

$$d = f_1 - f_2$$

$$f_2 \text{ ist Zerstreuungslinse} \quad M = \begin{bmatrix} 1 & 0 \\ 1/f_2 & 1 \end{bmatrix}$$

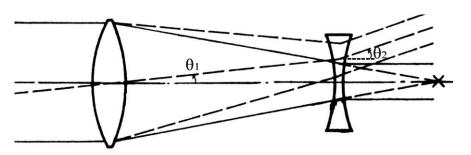
$$=> \text{ersetze} - \frac{1}{f_2} - > \frac{1}{f_2}$$

$$\Rightarrow \frac{1}{fGes} = \frac{1}{f_1} - \frac{1}{f_2} - \frac{d}{f_1 \cdot f_2} = 0$$

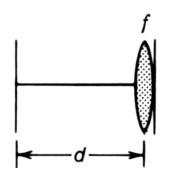
Galilei:

$$=>\mathbf{M}_{Ges}=\begin{pmatrix}\mathbf{f}_2/\mathbf{f}_1 & \mathbf{f}_1-\mathbf{f}_2\\\mathbf{0} & \mathbf{f}_1/\mathbf{f}_2\end{pmatrix}$$

Winkelvergrößerung: $M_{22} = f_1/f_2$ aufrecht!



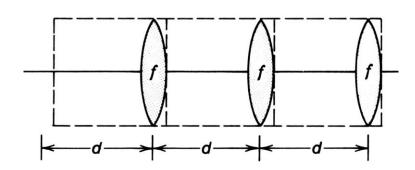
Periodisches optisches System (Teleskopisches System)



Driftstrecke

$$\mathbf{M}_{ges} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{d} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{d} \\ -\frac{1}{f} & 1 - \frac{\mathbf{d}}{f} \end{bmatrix}$$

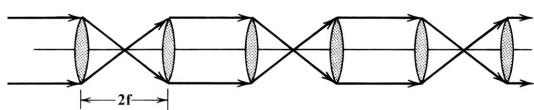
Betrachte Abfolge von mehreren Einheitszellen: Wie kann man damit identische Abbildungen erzielen?



1) Zwei Einheitszellen

$$\begin{bmatrix} 1 & d \\ -\frac{1}{f} & 1 - \frac{d}{f} \end{bmatrix} \begin{bmatrix} 1 & d \\ -\frac{1}{f} & 1 - \frac{d}{f} \end{bmatrix} = \begin{bmatrix} 1 - d/f & 2d - d^2/f \\ \\ -2/f + d/f^2 & -d/f + (1 - d/f)^2 \end{bmatrix}$$
 mit $d = 2f \Rightarrow$ $M^2 = -1 \Rightarrow M^4 = 1$

mit
$$d = 2f => M^2 = -1 => M^4 = 1$$

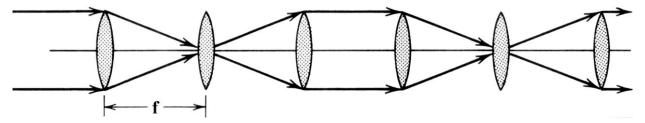


2) Drei Einheitszellen

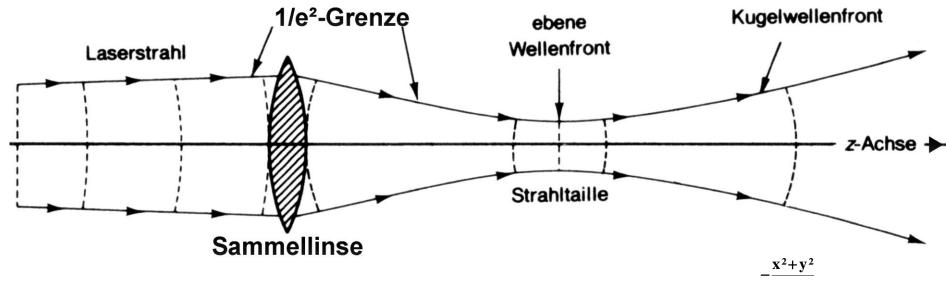
$$mit d = f$$

$$M^3 = -1$$

$$M^6 = 1$$



Teleskopisches System ist das Grundelement eines klassischen Endoskops



Typischer Verlauf eines Laserstrahls in Strahlrichtung

$$\mathbf{E}(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{E}_0(\mathbf{z}) \; \mathbf{e}^{-\frac{\mathbf{w}^2(\mathbf{z})}{\mathbf{w}^2(\mathbf{z})}}$$

Laseraustritt: ebene Wellen (R -> ∞). Hieraus entwickeln sich Kugelwellen mit R(z)

Radius R(z) der Kugelwellen wird von Sammellinse geändert: divergent -> konvergent

Divergenter Strahl: R > 0, konvergenter Strahl R < 0)

Nach der Sammellinse folgt Strahltaille (engste Einschnürung, waist), die sich wieder aufweitet

Intensitätsverteilung senkrecht zur z-Achse an Stelle z: $I(x,y,z) = I_0(z) e^{-2\frac{x^2+y^2}{w^2(z)}} = I_0(z) e^{-2\frac{\rho^2}{w^2(z)}}$

Definition der Strahlgrenze $w(z) \perp zur z$ -Achse: für $x^2+y^2=w^2(z) \Rightarrow I=I_0/e^2$ $(1/e^2=0.135)$

Innerhalb $I/I_0 = 1/e^2$ befinden sich 86,5 % der gesamten Strahlleistung, Strahl<u>radius</u> w(z)

Entwicklung Strahlradius w(z) läßt sich, <u>ausgehend von der Strahltaille</u>, analytisch beschreiben

Strahlparameter Laserstrahl I

an Strahltaille (z = 0): $R = \infty$

Entwicklung Strahl<u>radius</u> w(z), <u>ausgehend von Strahltaille</u> w₀:

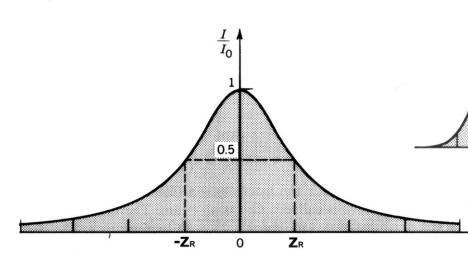
$$w(z) = w_0 [1 + (z/z_R)^2]^{1/2}$$

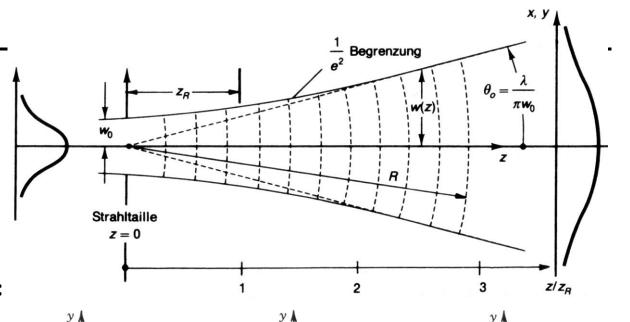
Intensität entlang der Strahlrichtung z:

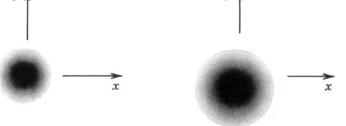
$$I(\rho, z) = I_0 \left[\frac{w_0}{w(z)} \right]^2 \exp \left[-\frac{2\rho^2}{w^2(z)} \right]$$

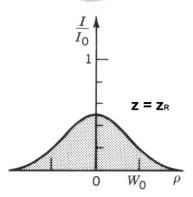
$$I(0, z) = I_0 \left[\frac{W_0}{W(z)} \right]^2 = \frac{I_0}{1 + (z/z_R)^2}$$

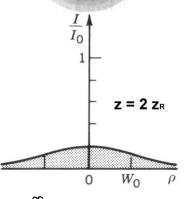
$$I(0, z_R) = I_0/2$$











Gesamtleistung Strahl:

$$\mathbf{P} = \int_{0}^{\infty} \mathbf{I}(\rho, \mathbf{z}) 2\pi \rho d\rho$$

$$=> P = \frac{1}{2} I_0 (\pi w^2_0)$$

z = 0

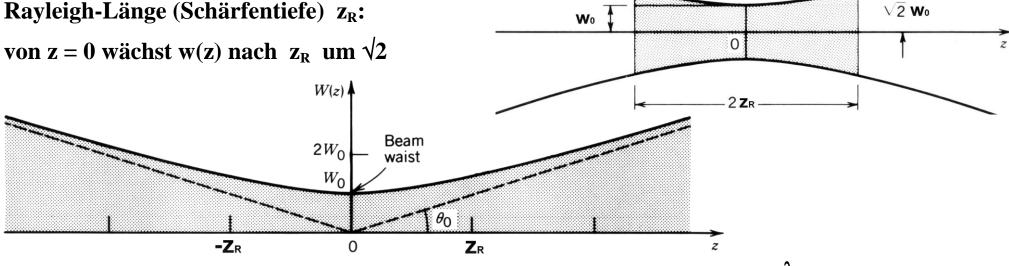
unabhängig von z

Strahlparameter Laserstrahl II

Strahlradius:

 $w(z) = w_0 [1 + (z/z_R)^2]^{1/2}$

Rayleigh-Länge (Schärfentiefe) z_R :



<u>Fernfeld</u> $(z >> z_R)$: $w(z) = \theta_0 z$ mit dem halben Öffnungswinkel $\theta_0 = \frac{\lambda}{2}$ (Wellenlänge!)

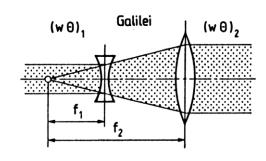
$$\text{Mit} \qquad \text{w(z)} = \text{w}_0 \ (\text{z/z}_R) \quad \text{für} \ \ z >> z_R \qquad => \quad \theta_0 = \text{w}_0 / z_R \ \ (\text{typisch mrad}) => \qquad z_R = \frac{\pi \text{w}^2_0}{\lambda}$$

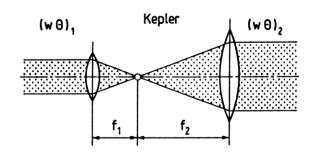
$$\mathbf{w}(\mathbf{z}) = \mathbf{w}_0 \ \mathbf{z}/\mathbf{z}_R = \frac{\lambda}{\pi \mathbf{w}_0} \ \mathbf{z}$$

Strahlparameterprodukt:

$$\theta_0 \mathbf{w}_0 = \lambda/\pi = \theta' \mathbf{w}'$$

konstant, aber nur an "waist" definiert!





Nahfeld

DOF: depth of focus

mit größerem Strahlradius w verkleinert sich die Divergenz θ

Strahlparameter Laserstrahl III

Beispiel: 1 mW He-Ne-Laser $\lambda = 633$ nm

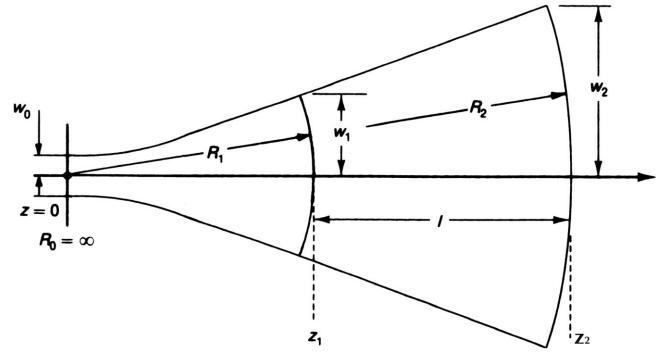
$$\lambda = 633 \text{ nm}$$

Strahldurchmesser an waist: $2 w_0 = 0.1 \text{ mm}$

doppelter Öffnungswinkel 2 $\theta_0 = 2 \frac{\lambda}{m} = 8,06 \text{ mrad} => \text{ in } z = 1000 \text{ m}$ 2 w(z) = 2 θ_0 z = 8 m

Rayleigh-Länge (Nahfeld): $z_R = \frac{\pi w^{2_0}}{\lambda} = 12,4 \text{ mm}$ Strahlparameterprodukt θ_0 $w_0 = 0,4 \cdot 10^{-6}$ m rad

Fernfeldnäherung gültig für $z > 20 z_R$



Krümmungsradius Wellenfront:

$$\mathbf{R}(\mathbf{z}) = \mathbf{z} + \mathbf{z}^2_{\mathbf{R}}/\mathbf{z}$$

z. B.
$$R(z_R) = z + z_R^2/z = 2 z_R$$

im Beispiel:

$$R(z_R) = 2 z_R = 24.8 \text{ mm}$$

$$R(2 z_R) = 5 z_R = 62 mm$$

$$R(3 z_R) = 26 z_R = 322 mm$$

R > 0 für divergierenden Strahl

R < 0 für konvergierenden Strahl

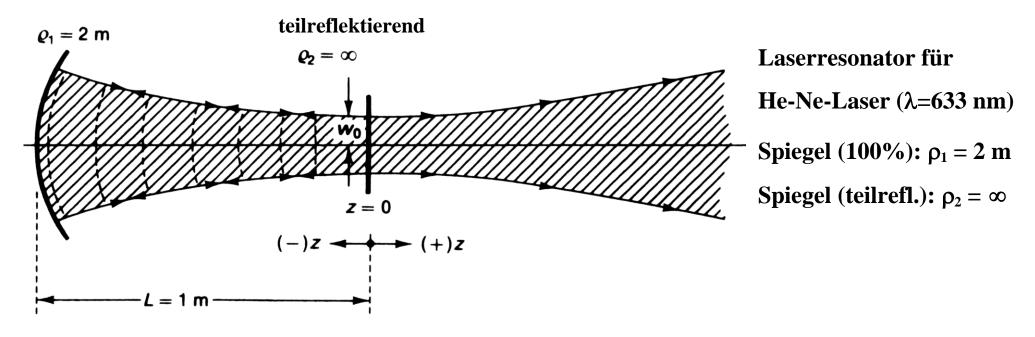
Wegen $R(z) = z + z_R^2/z$ => $R = \infty$ für z = 0

$$\Rightarrow$$
 $\mathbf{R} = \infty$ für $\mathbf{z} = 0$

Fernfeld ($z > 20 z_R$): R(z) = z

$$R(z) = z$$

Beispiel Laserresonator



Bei stabil arbeitendem Laser sind die Krümmungsradien der Wellenfronten und Spiegel gleich

=> gerade Wellenfronten am Austrittsspiegel ($R=\infty$) => dort Strahltaille

=> Rayleigh-Länge: mit $R(z)=z+z^2_R/z$ und R(z=-1 m)=-2 m => $z_R=1 m$

mit $z_R = \frac{\pi w^{2_0}}{\lambda}$ => Radius Strahltaille $w_0 = (z_R \lambda/\pi)^{1/2} = 0,45 \text{ mm}$

Strahlradius auf dem linken Laserspiegel: $w(z = -1 \text{ m}) = w_0 \sqrt{2} = 0,64 \text{ mm}$

Halber Öffnungswinkel: $\theta_0 = w_0/z_R = 0.45$ mrad (BESSY II: etwa 0.1 mrad)

Strahlparameterprodukt: $\theta_0 w_0 = 0.203 \text{ m rad}$

Ausbreitung eines Laserstrahls I

Vollständige Beschreibung des Laserstrahls mit <u>komplexem Strahlparameter</u> q(z)

Es gilt:
$$\frac{1}{q(z)} = \frac{1}{R} - j \frac{\lambda}{\pi w^2}$$

An
$$z = 0$$
: $\underline{q}_0 = \mathbf{j} \frac{\pi w^{2_0}}{\lambda} = \mathbf{j} z_R$

An Stelle
$$\mathbf{z}_1$$
: $\underline{\mathbf{q}}_1 = \underline{\mathbf{q}}_0 + \mathbf{z}_1$

Verhalten Strahlparameter

Bei optischem System ABCD $\begin{bmatrix} \mathbf{y}_2 \\ \mathbf{\theta}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{\theta}_1 \end{bmatrix}$ $q_1 = q_0 + z_1$ Strahlradius $R_1 = w_1/\theta_1$

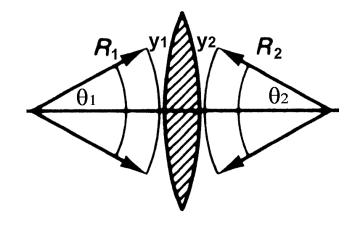
Strahlradius
$$R_2 = w_2/\theta_2 = \frac{\theta_1(A\frac{w_1}{\theta_1} + B)}{\theta_1(C\frac{w_1}{\theta_1} + D)} = \frac{A \cdot R_1 + B}{C \cdot R_1 + D}$$

z. B. Driftstrecke d: $R_2 = R_1 + d$

 q_2

 $\underline{q}_2 = \underline{q}_0 + Z_2$

Ausbreitung eines Laserstrahls II



Wirkung einer dünnen Linse (direkt an Linse)

$$\begin{bmatrix} \mathbf{y}_2 \\ \mathbf{\theta}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{\theta}_1 \end{bmatrix}$$

$$R_2 = \frac{AR_1 + B}{CR_1 + D}$$
 => $\frac{1}{R_2} = \frac{1}{R_1} - \frac{1}{f}$

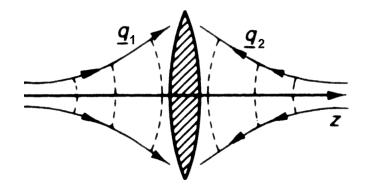
$$\frac{1}{q_2} = \frac{1}{R_2} - j \frac{\lambda}{\pi w_2^2}$$

sowie
$$\mathbf{w}_1 = \mathbf{w}_2 = \mathbf{w} \Rightarrow$$

Wegen
$$\frac{1}{\underline{q}_1} = \frac{1}{R_1} - j\frac{\lambda}{\pi w_1^2}$$
 und $\frac{1}{\underline{q}_2} = \frac{1}{R_2} - j\frac{\lambda}{\pi w_2^2}$ sowie $w_1 = w_2 = w =>$

$$\frac{1}{q_2} = (\frac{1}{R_1} - \frac{1}{f}) - j\frac{\lambda}{\pi w_1^2} = \sum_{q_1} \frac{1}{q_2} = \frac{1}{q_1} - \frac{1}{f}$$

=> formale Äquivalenz des Verhaltens der Radien R und der komplexen Strahlparameter q:



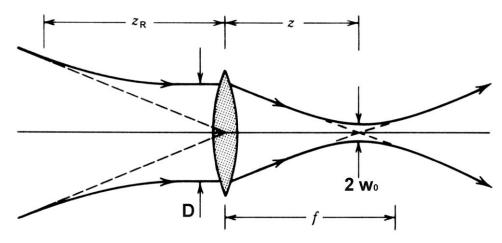
$$\underline{\mathbf{q}}_{2} = \frac{\mathbf{A}\underline{\mathbf{q}}_{1} + \mathbf{B}}{\mathbf{C}\underline{\mathbf{q}}_{1} + \mathbf{D}}$$

$$\underline{q}_2 = \frac{A\underline{q}_1 + B}{C\underline{q}_1 + D}$$
 dünne Linse: $\underline{q}_2 = \frac{\underline{q}_1}{1 - \underline{q}_1/f}$

oder auch:
$$\frac{1}{q_2} = \frac{1}{q_1} - \frac{1}{f}$$

Bei Kenntnis von q1 am Eingang eines optischen Systems lässt sich die Form des Laserstrahls überall berechnen

Ausbreitung eines Laserstrahls III



Beispiel: waist an dünner Linse \Rightarrow R₁ = ∞

$$\Rightarrow \frac{1}{\underline{\mathbf{q}}_1} = \frac{1}{\infty} - \mathbf{j} \frac{4\lambda}{\pi \mathbf{D}^2} = -\mathbf{j} \frac{4\lambda}{\pi \mathbf{D}^2}$$

mit
$$\underline{\mathbf{q}}_2 = \frac{\underline{\mathbf{q}}_1}{1 - \underline{\mathbf{q}}_1 / \mathbf{f}} \Longrightarrow \frac{1}{\underline{\mathbf{q}}_2} = -\frac{1}{\mathbf{f}} - \mathbf{j} \frac{4\lambda}{\pi \mathbf{D}^2}$$

nach der Linse:
$$\frac{1}{R_2} = \frac{1}{R_1} - \frac{1}{f} \implies R_2 = -f \ (R_1 = \infty)$$

(Strahl konvergiert) beam waist <u>bleibt</u> w = D/2

Ort der Strahltaille nach der Linse:

$$aus \ R(z) = z + z^2_R/z \qquad und \quad w^2(z) = w^2_0 \left[1 + (z/z_R)^2\right] \qquad mit \ R(z)/w^2 \ (lange \ Rechnung)$$

=>
$$z = \frac{R_2}{1 + (\lambda R_2/\pi w^2)^2} = \frac{-f}{1 + (4\pi f/\pi D^2)^2}$$
 Ort der Strahltaille, befindet sich nicht am Fokus!

Durchmesser der Taille: aus
$$w_0^2 = \frac{w^2}{1 + (\pi w^2/\lambda R_2)^2}$$
 $w_0^2 = \frac{D^2/4}{1 + (\pi D^2/4\lambda f)^2} \approx \frac{4\lambda^2 f^2}{D^2}$ $w_0 \approx \frac{2\lambda f}{D}$

Strahl kann im Durchmesser nicht beliebig klein werden, Beugung!

$$\theta_0 = \frac{\lambda}{\pi w_0} \approx \frac{D}{2\pi f}$$
 w_0 kleiner => θ_0 größer

depth of focus:
$$z_R = \frac{\pi w^{2_0}}{\lambda} = \frac{\lambda}{\pi \theta_0} \approx (\frac{2\lambda f}{D})^2$$
 Tiefenschärfe nimmt quadratisch ab!

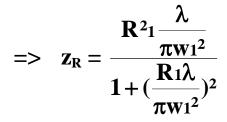
Beziehung der Strahlparameter

R_1 und w_1 seien an der Stelle z_1 bekannt

$$Wegen \quad \frac{1}{\underline{q}(z)} = \frac{1}{R} - j\frac{\lambda}{\pi w^2} \qquad sowie \quad \underline{q}_1 = z_1 + \underline{q}_0 = z_1 + j \ z_R \quad \Rightarrow \quad \frac{1}{\frac{1}{R_1} - j\frac{\lambda}{\pi w_1^2}} = z_1 + j \ z_R$$

$$=> \frac{1/R_1}{(\frac{1}{R_1})^2+(\frac{\lambda}{\pi w_1^2})^2}+j\frac{\frac{\lambda}{\pi w_1^2}}{(\frac{1}{R_1})^2+(\frac{\lambda}{\pi w_1^2})^2}=z_1+jz_R \qquad \text{Vergleich von Real- und Imaginärteil}$$

=>
$$z_1 = \frac{R_1}{1 + (\frac{R_1 \lambda}{\pi w_1^2})^2}$$
 Abstand von der Strahltaille w_0



mit
$$\mathbf{w}_1 = \mathbf{w}_0 \left[1 + (\mathbf{z}_1/\mathbf{z}_R)^2 \right]^{1/2}$$

$$=> w_0 = \frac{w_1}{\left[1 + (\pi w^2 1/\lambda R_1)^2\right]^{1/2}}$$

Rückberechnung der Strahltaille

